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Abstract 
 

A pattern recognition system which is able to recognize a user is essentially referred to as a biometric 

system. In this paper, two types of biometric signals were used to build the proposed multimodal 

biometric system; the Electrocardiogram (ECG) and Heart Sound (HS). The ECG and HS data are not 

commonly used as biometric due to the signal characteristic complexity which make it very hard to 

duplicate and more immune to spoof attacks. This work was conducted for Client Identification (CID) 

with fixed 20 clients, the data were sampled at 44 kHz for the two biometric signal. An adaptive 

windowed approach of Mel Frequency Cepstral Coefficients (MFCC) was used to extract the features. 

The extracted features then partitioned into train and test sets, the train set fed to Hidden Markov Model 

(HMM) to create the independent-client trained model. The purposed biometrics system is based on the 

performance of two folds of training sets, 30% and 70%. Complexity of states and Gaussians also plays a 

role on the performance.  The best performance for CID with 44 kHz, evaluated with 20 clients is based 

on HS which provide an accuracy of 93.04% with training data of 70%. The worst performance goes to 

87.89% for ECG at 30%. 
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1.0 INTRODUCTION 
 

 

Biometrics application has risen to become new 

standard of security. There are wide range of types of 

biometric signals to choose from. A palm vain 

recognition [1], [2] is also widely used and it has the 

ability to operate in challenging environment. The 

vain recognition has its weaknesses, which are 

inherently limited accuracy. Another common 

biometric is Iris recognition that is resistance to false 

matching. Once enrolled, the stability over the 

feature of individual characteristic is of a lifetime. 

Speech recognition lack of negative perception [3], 

[4], usable friendly but its weakness is ambient noise. 

Signature biometric is perceived as non-invasive [5], 

[6] but inconsistence of signature lead to increase in 

error rates. There are many type of biometric that 

can be used and each has it advantage and 

disadvantages. However it also depends on the 

application and where its implemented. Futhurmore 

HS and ECG are still new area of research being 

explore for biometric application compared for 

example to speech biometric. There is still an 

extensive work need to be done on this area. The 

work conducted in the study uses liveliness biometric 

signals, which mean the data taked from a clients 

reqires themselves to be aware and permission to 

retrive. This makes the system secure as it isn’t esily 

stolen and be prone to spoof attacks. Since ECG and 

HS is a biosignals, the shape and features of the data 

is uniques and varies from others, duplicating or 

forging these signal would be difficult for this time 

point. 

 

This research focused on the development of a 

single platform that can perform biometric security 

[7], [8], [9], [10], and [11] which address the problems 

discussed by other researcher. A biometric 

evaluation platform is composed of a start/end 

point, feature extraction and Markov model.  In this 

study, a CID approach to enhance the performance 

of the biometric system in order to achieve higher 

accuracy was suggested in comparison to the other 

standard  CID based biometric system [12], [13], [14], 

[15]. The methodology and the experimental will be 

discussed in the next session. 

 

 

2.0 EXPERIMENTAL 
 

Figure 1 show the biometric evaluation platform. 

Experimental results are evaluated based on the 

each biometric signals, percentage split of data 

training (30% and 70%), the increments of client, and 

complexity of the states and Gaussians 

classifications. The database consists of 2 biosignals, 

and the first evaluation of the biometric system is the 

CID experiments. The performance of HMM varies 

strongly with the amount of data being trained.  

 

 

 
Fig. 1. Block diagram for biometric system 

 

 

Data based 

 

The database used to evaluate the system is 

trained with training data of each cycle for the 

construction of the states and Gaussian model. The 

model is conducted for 20 clients for ECG and HS. 

The complexity of stats and Gaussian is conducted 

for states 1 to 5, and Gaussian 4 to 16.  

 

The data are trained according to the 

percentages split data training (30% and 70%) for 

each of the biometric signals which will model the 

CID system. The frame sizes are 20ms with 15ms 

overlap. Using standard MFCC analysis [16], [17] 

feature vector consist of 12 MFCC coefficient were 

extracted every 20msec from the speech. The same 

feature extraction technique was carried out also for 

the other two biosignals.  

 

Feature Extraction 

 

The biometric system is based on MFCC. The MFCC 

features are robust (especially for speech and heart 

sound) [18]. The signals will undergo several steps, 

which are pre-emphasis, Hamming windowing, Fast 

Fourier Transform FFT, triangular band pass filter, and 

Discrete cosine transform DCT. 12 MFCC is used to run 

all the experiments.  

 
Classification 

 
The HMM model is an extended version of the 

Markov chains, where in each state does not 

correspond to any of the observable event, but is 

able to connect to a set of probability distributions of 

a state. The HMM model is noted to be a very 

effective model that is popular in the speech 

processing domains [19], [20], [21], [22].  The HMM 

model used in this study is a 4-state left-to-right HMM 

model and can be seen in Figure 2. 
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Fig. 2. Representation of the left-to-right HMM 

 

 

3.0 RESULTS AND DISCUSSION 
 

Table I, shows the CID for 44 kHz for 20 clients. The 

two biometric signals is conducted for 30% and 70% 

data training and the rest assigned to testing 

dataset. The database is split into train and test. 

Training the data for 30% reqires less time 

computations compared to training the data for 

70%. However what lacks in computation time, could 

also mean a boost in performance of the system.  

The experiment was conducted  to also explore 

which would perfroms better. 

  

Figure 3, shows the bar plot of the comparison 

between the percentage split of data training. Based 

on the bar plot itself, 70 % outperforms the 30% data 

training. This seems to suggest that training with more 

data, increases the accuracy performance for both 

case of the biometric signals. 

 

Table I. Best CID for 44 KHz. 

 
Best Client Identification  for 44 kHz for 20 clients 

 30 % 70 % 

ECG 87.89 90.72 

HS 89.87 93.04 

 

 

 
 

Fig. 3.  Best CID for 44 kHz for 20 clients 

 

Figure 4 and Figure 5 shows the performance being 

evaluated in terms of the complexity of states and 

Gaussians based on 30% of training data and 70% of 

training data. Based on the graph both 30% and 70% 

shows an almost similar pattern. Its shows a gradual 

increments on performances as the states and 

Gaussian increments.  

 

The graph also shows HS is more stable and 

consistence with outcome for both case of training 

data. Same cannot be said towards ECG 

performance, though both 30% and 70% gradually 

increased. The ECG performance started at a lower 

point compared to HS and increased drastically 

towards the end. 70% gives the best result outcome 

for accuracy 90.72% for ECG and 93.04% for HS. 

 

 

Fig. 4. Performance based on 30% data training 

 

 

 

Fig. 5. Performance based on 70% data training 

 
4.0 CONCLUSION 
 

The best overall performance for 44 kHz for 20 

clients achieved an accuracy of 93.04% for HS at 70% 

of data training. The worst overall performance falls 

at 30% ECG at 87.89%. Overall performance shows 
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that there is a significant improvement of training the 

data between 30% and 70% at maximum complexity 

of states and Gaussian of state 5 Gaussian 16. 

 

 

5.0 FUTURE WORK 
 

Currently, we are working on a switching linear 

dynamics system of piece wise  stationary 

autoregressive (AR)  process for segmentation the 

heart sound into the fundamental components of first 

heart sound, systolic, second heart sound and 

diastolic. The work intend to capture both the 

continuous state space in the hidden dynamics of 

the phonocardiogram (PCG) recordings using 

regime switching [23] and [24] in dynamics using 

discrete Markov Chain. This is to overcomne 

limitations of HMMs which is based on a single layer 

of discrete states. Preliminary results indicate the 

proposed techniques has the ability to classify each 

heart beat (segment). 

 

In another area, the key challenge in analysing 

biological network is the classicle problem of high 

dimensionality. The brain will consists of huge number 

of nodes, which involves massive spatio-temporal 

data and requires estimates of very high dimensional 

correlation matrics. To overcome this problems, we 

are developing a milti scale factor analysis (MFSA) 

model which can handle massive data. Preliminary 

result is shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Covariance matrix y from raw data 

 
The plot represents the clean data without noise. 

It is driven by Q loding and the factor loding f 

parameters, using static principle component 

analysis (PCA). The effects of heart activity on brain 

function has been research extensively over the past 

years. Extension to the above work we are studying 

how the heart activities  is correlated with large scale 

scale patterns of [25] and [26] of the brain functions. 

Although, there is much to understand, it appears 

that the above proposed solutions could show the 

Region of Interest (ROI) are inter-connected within 

common function and anatomical domains, 

revealing distinct pattern that can be used in 

applications such as brain diagnosis for epilepsy, 

stroke, and even brain signals biometrics. 
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